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Abstract. This paper introduces a new approach to add fault-tolerance
to a fulltext retrieval system. The weighted pattern morphing technique
circumvents some of the disadvantages of the widely used edit distance
measure and can serve as a front end to almost any fast non fault-toler-
ant search engine. The technique enables approximate searches by care-
fully generating a set of modified patterns (morphs) from the original
user pattern and by searching for promising members of this set by a
non fault-tolerant search backend. Morphing is done by recursively ap-
plying so called submorphs, driven by a penalty weight matrix. The al-
gorithm can handle phonetic similarities that often occur in multilingual
scientific encyclopedias as well as normal typing errors such as omission
or swapping of letters. We demonstrate the process of filtering out less
promising morphs. We also show how results from approximate search
experiments carried out on a huge encyclopedic text corpus were used to
determine reasonable parameter settings.
A commercial pharmaceutic CD-ROM encyclopedia, a dermatological
online encyclopedia and an online e-Learning system use an implementa-
tion of the presented approach and thus prove its “road capability”.

1   Introduction

One of the main advantages of digitally stored texts is the possibility to easily
retrieve information from their content. In written texts there is always the
possibility of errors and ambiguities concerning their content. Particularly
large scientific encyclopedias, though they may have passed a thorough scru-
tiny, often use more than one spelling for the same scientific term. 

Publishers of encyclopedias and dictionaries are often confronted with a
problem when a large number of contributing authors produce the text con-
tent. These authors tend to use synonymous notations for the same specific
term. This might seem of minor importance to the user of a printed edition.
The user of an electronic version, however, might be misled by the fact that a
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retrieval produced results. The user might have had more results when
searching for a different spelling of the search term (e.g., different hyphen-
ation, usage of abbreviations, multilingual terms).

Since 1999 our chair of computer-science has cooperated with Springer-Ver-
lag, a well-known scientific publishing company, to compile the annual elec-
tronic version of Hagers Handbuch der Pharmazeutischen Praxis (Hager's
Handbook of Pharmaceutic Practice) [1], the standard encyclopedia for Ger-
man speaking pharmacists and pharmacologists. The printed version of
“Hager's Handbook” consists of twelve volumes with about 12,300 pages. The
first part (five volumes) describes active substances drawn from plants (herbal
drugs), and the second (five volumes) is about synthetically produced agents
(drugs). The two last volumes contain the manually generated index.

The first electronic version was released as HagerROM 2001 at the end of
2000, and the current 3rd release was in June 2003 as HagerROM 2003 [2]. To
make the vast amount of Hager's information accessible to the end-user, a fast
q-gram based fulltext retrieval system, which is briefly described in section 2,
was built into HagerROM.

For a better understanding of the decisions we made during the development
of the text retrieval system, some key data regarding HagerROM follows:
− The first edition was published by Mr. Hager in 1876
− 600 contributing authors wrote the current fifth edition (1995–2000) in
− 6,100 separate articles, which led to
− 121 MB of XML tagged text, which, in turn, lead to
− 157 MB of HTML tagged text in
− 16,584 HTML files, which resulted in
− 53 MB raw text T (after removing layout tags) with
− >160 symbol long alphabet Σ (after lowercasing T)

 
We soon were confronted with the need for making the text retrieval fault-tol-
erant, owing to the following characteristics of Hager: The two expert-gener-
ated index volumes of the print edition list about 111,000 different technical
terms drawn manually from the Hager text corpus. These entries were used in
the articles by the large number of contributing authors and consist of Ger-
man, Latin and English terms – making text retrieval a multilingual problem.

For example “Kalzium” (Ger.) has 42 occurrences and “Calcium” (Lat.) has
about 3750 occurrences in text T. So, whatever word variant a user feeds into
a non fault-tolerant search algorithm, not all usages of the technical term will
be found. Additionally spelling and typing errors are a problem in such a
large text corpus. For example the word “Kronblätter” (crown leaves), with
about 600 hits, was once typed wrong as “Kronbläter” and occurs once cor-
rectly as a slightly changed substring of “kronblättrig” (crown petaled).
Empirical studies by Kukich [3] have shown that the percentage of mistakes
in texts is not negligible. More precisely, she found that texts contain 1%–
3.3% typing errors and 1.5%–2.5% spelling errors.



This paper is organized as follows: In section 2 we first give an overview of
previous work, describe our non fault-tolerant search backend, and summarize
other existing fault-tolerant approaches. In section 3 we introduce the algo-
rithm of weighted pattern morphing and provide the rationale for the parame-
ter choices used in the design of the algorithm. Section 4 then shows the re-
sults of some retrieval experiments we carried out on the text corpus of
HagerROM, to give an idea of the average running time of the algorithm. Fi-
nally, section 5 presents conclusions and ideas of future work.

2   Previous Research 

Fast search algorithms store their knowledge of a text in an appropriate in-
dex, commonly implemented using one of the following data structures
(see [4]): suffix tree, suffix array, q-grams or q-samples (Sometimes authors re-
fer to q-grams and q-samples as n-grams and n-samples respectively).

2.1   Our Non Fault-tolerant Search Backend

The non fault-tolerant variant of our search engine uses a compressed q-gram
index. When this index is created, the position (offset from first symbol in T)
of every substring Q with length q inside text T is stored in an appropriate
index (see [5] for details).

As the position of every substring of length q is stored in the index, this
leads to quite large index sizes, which is seen as the main disadvantage of this
indexing technique (see [4], [6]). On the other hand storage space is nowadays
often a negligible factor, and so one can benefit from the enormous retrieval
speed q-gram indices provide.

In the field of fault-tolerant information retrieval, vectors of q-grams are
sometimes used to calculate the spelling distance of two given strings (see
Ukkonen's q-gram distance measure [7]). But as this technique is rather ori-
ented towards spelling and not towards sound we use weighted pattern
morphing (WPM) for approximate matching. For our approach the q-gram
index serves as an (exchangeable) exact, non-approximate search backend,
where other data structures like suffix tree or a word index would also be fea-
sible. In our case, q-grams are a good choice, as they are very fast in detecting
that a special pattern is not part of the text: e.g., if any of the q-grams con-
tained in the search pattern is not part of the q-gram index the algorithm can
terminate – there are no occurrences of the pattern inside the text. This is
useful, as many patterns that WPM generates may not be part of the text.

It is obvious that the size of the above mentioned offset lists is independent
of q, as the position of the Q window always increases by one. Further, with
increased values of q, the average length of the offset lists drops, while the to-



tal number of these lists raises, and so does the required storage space for the
managing meta structure for the index.

To get reasonable retrieval performance, values of q≥3 are mandatory to
avoid processing long offset lists during a search. However, when only an in-
dex for q≥i is generated, search patterns P with |P|<i cannot be found in ac-
ceptable time. Consequently, indices for more than one q are needed, which
leads to even more storage space requirements for the total index structure.
(Note: |X| denotes the length of string X in characters).

Instead of saving storage space by using q-samples, which are non-overlap-
ping q-grams (i.e., every hth q-gram, h≥q, is stored in the index), we use nor-
mal, overlapping q-grams with q={1,2,3,4}. For an approximate search ap-
proach with q-samples see [6]. But to save space, we skip every 3- and 4-gram
Q where at least one character of Q is not among the f most frequent uno-
grams (i.e., 1-gram) of the text, so called favorites. 

So while the unogram and duogram index is complete, we skip every occur-
rence of, for example, 17_°, 7_°C and _°C_ (where '_' denotes 'space'), while
we store every position of, for example, _rat, rats and ats_.

This technique turned out to be extremely flexible for the process of tuning
our search engine to maximum speed by filling up the available storage space
(e.g., of the distributed CD-ROM) with more and more 3- and 4-grams in our
index structure.

Though the storage of unograms might seem obsolete, when duograms are
present, unograms are necessary for two reasons: First, retrieval of seldom
used symbols like a Greek 'δ' might be important to the end-user, as even this
single symbol carries enough information content to be interesting. Second,
our fault-tolerant add-on (see section 3) may modify user patterns using '?'
wildcards, leaving unograms close to the borders of the new pattern.

2.2   Common Techniques for Fault-tolerant Fulltext Retrieval

In 1918 Robert C. Russell obtained a patent for his Soundex algorithm [8],
where every word of a given list was transformed in a phonetic, sound-based
code. Using this Soundex code, U.S. census could look up surnames of citizens
rather by sound instead of spelling, e.g., Shmied and Smith both have the
Soundex code S530. Unfortunately Soundex too often gives the same code for
two completely different words: catherine and cotroneo result in C365 and
similar sounding words get different codes: night=N230 and knight=K523.
Although there have been many improved successors to this technique
(e.g., [9] and [10]), all of them are word based and thus lack the ability to find
patterns at arbitrary positions inside a text (e.g., pattern is substring of a
word inside the text). Further, with sound code based systems it is impossible
to rank strings that have the same code: strings are either similar (same code)
or not (different code). Last, phonetic codes are usually truncated at a special
word length, which make them less usable in texts with long scientific terms.



In [4] a taxonomy for approximate text searching is specified. According to
this taxonomy, three major classes of approaches are known: neighborhood
generation, partitioning into exact search and intermediate partitioning.

Neighborhood generation generates all patterns P' ∈ Uk(P) that exist in the
text, where editdistance(P, P') ≤ k for a given k (for a description of edit
distance see below). These neighbor patterns are then searched with a normal,
exact search algorithm. This approach works best with suffix trees and suffix
arrays but suffers from the fact that Uk(P) can become quite large for long
patterns P and greater values of k.

Partitioning into exact search carefully selects parts of the given pattern
that have to appear unaltered in the text, then searches for these pattern
parts with a normal, exact search algorithm and finally checks whether the
surrounding parts of the text are close enough to the original pattern parts.

Intermediate partitioning, as the name implies, is located between the other
two approach classes. First, parts of the pattern are extracted, and neighbor-
hood generation is applied to these small pieces. Because these pieces are
much smaller and may have fewer errors than the whole pattern, their neigh-
borhood is also much smaller. Then exact searching is performed on the gen-
erated pattern pieces and checked to see whether the surrounding text forms
a search hit.

Various approaches have been developed to combine the speed and flexibil-
ity of q-gram indices with fault-tolerance. Owing to the structure of q-gram
indices, a direct neighborhood generation is not possible in reasonable time.
Jokinen and Ukkonen present in [11], how an approximate search with a q-
gram index structure can be realized with partitioning into exact search. Na-
varro and Baeza-Yates in [5] use the same basic approach, but assume the er-
ror to occur in the pattern, while Jokinen and Ukkonen presume the error to
be in the text, which leads to different algorithms. Myers demonstrates in [12]
an intermediate partitioning approach to the approximate search problem on
a q-gram index.

All the above methods are based on the definition of one of the two string
similarity metrics published by Levenshtein in [13] called Levenshtein distance
and edit distance. Both metrics calculate the distance between two strings by
summing up the minimal costs of transforming one string into the other by
counting the atomic actions insert, delete and substitute of single symbols [14].

Though these metrics provide a mathematically well-defined measure for
string similarities, they also suffer from the inability to model similarity of
natural language fragments satisfactorily, from a human point of view.

With regard to the special characteristics of the Hager text corpus, the use
of the edit distance measure did not seem appropriate. This is mainly due to
the fact that the edit distance processes only single letters (regardless of any
context information) and does not provide the means of preferring a string
substitution A→B versus A→C, where |A|≥1, |B|≥1 and |C|≥1 and |A|, |B| and
|C| are arbitrarily different.
For example: editdistance(“kalzium”, “calcium”)=2 and editdistance



(“kalzium”, “tallium”)=2, are the same – despite the fact that every human
reader would rate the similarity of first two strings much higher than the
similarity of the second pair of strings.

Because the edit distance is more suited to model random typing mistakes
or transmission errors, we needed a way to approximate patterns where the
differences between text and pattern are less “random” but more due to the
fact that a great number of authors may use the same scientific term in differ-
ent (but correct) spellings. We also wanted to cope with the problem of non-
experts knowing how a scientific term sounds, without exactly knowing the
correct spelling. Our technique of weighted pattern morphing is described in
the next section.

3   Weighted Pattern Morphing 

In this section we present the architecture and algorithms of our fault-tolerant
frontend, which is based on the weighted pattern morphing approach. After-
wards we show the results of experiments that led to reasonable parameter
settings for our fault-tolerant search engine.
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Fig. 1. Workflow of weighted pattern morphing frontend and search backend

3.1   The Fault-tolerant Search Frontend

As stated at the end of the previous section the edit distance metric, which is
used by most available approximate text retrieval algorithms, is not appropri-
ate, when one is trying to model a more human-oriented string similarity.
Weighted pattern morphing (WPM) overcomes the mentioned disadvantages
with a simple but powerful idea:

Browse searchpattern P for all substrings pi,j (1≤i≤j≤|P|), which are part of
a phoneme group G with G={g1,g2,...,gz} and where pi,j=gk (1≤k≤z) and try to
replace pi,j by all gl (l≠k) which are members of the same phoneme group G.



More general as with the edit distance, here |pi,j| ≥ 1, |gl| ≥ 1 and even |pi,j|≠|gl|
is possible. A pattern P', where at least one substitution took place is called a
morph of P and a single substitution of pi,j to gl is called submorph pi,j→gl.

As the interchangeability of members of the same phoneme group should
be different, the concept of penalty weights was introduced. These penalty
weights were stored in two-dimensional submorph matrices with source strings
gk in rows and destination strings gl in columns (see examples in table 1).

Table 1. Two example penalty weight matrices (phoneme group “cgk...”; numbers)

c g k … 1 one 2 …

c – – 1 … one 1 – – …

g 10 – 10 1 – 1 –

k 1 15 – two – – 1

… … … …

As the table demonstrates, not every possible submorph is allowed, and the
matrix may be asymmetric to the diagonal. There exist submorph tables for
every common phoneme group like “a/ah/aa/ar”, “i/ie/y/ih/ii”, “g/j”,
“c/g/k/cc/ck/kk/ch”, and so on. The possibilities of the edit distance can be
approximated by submorphs like ε → ”?” (insert any char), c∈Σ → ”?” (sub-
stitute a char c), c∈Σ→ε (delete), where ε is the empty word, Σ the alphabet
and “?” is the one-letter wildcard for our search engine. But even more exotic
submorphs like solution → sol., acid → ac., 5 → five are defined. These
are often helpful in a biochemical and medical contexts, because abbreviations
are used inconsistently by different authors (e.g, in HagerROM the terms “5-
petaled” and “five-petaled” occur).

For the German language mixed with Greek and Latin terms we manually
identified about 25 different phoneme groups that lead to about 350 sub-
morphs. The penalty weights for these string pairs were adjusted manually
from a native speaker's point of view. Automatically adjusting the weights is
subject to ongoing research, and our early results seem quite promising. For
generation of English morph matrices we relied on linguistic research publica-
tions like e.g., Mark Rosenfelder's “Hou tu pranownse Inglish” [15]. Though
Rosenfelder presents rules to get from spelling to sound, we used his work to
identify about 35 English sound groups and their possible spelling which lead
to English morph matrices with about 900 submorphs. Additional submorphs
for number names and numbers (100→hundred, hundred→100) and domain
specific abbreviations were added afterwards.

Every morphed pattern P' is recursively fed into the same morph algo-
rithm, to perform even more submorphs. To avoid recursion loops, the first
index imin where submorphs pi,j→gl may start, is always increased for deeper
recursion levels. Loops otherwise may appear through submorphs at different
recursion levels like u→v, v→w, w→u. On every recursion level, P is also fed



unaltered into the next recursion, with only imin increased, to also allow sub-
morphs only towards the end of the pattern.

Because the recursion tree can get large, the total penalty S, as sum of the
penalty weights for all applied submorphs, and M, the total number of ap-
plied submorphs (=recursion depth), are updated for every recursion call. Re-
cursion backtracking is performed when either S or M pass configurable limits
Smax, Mmax or when imin > |P|. As Smax, Mmax and imin grow with every recursion
level, the algorithm terminates in reasonable time (see section 4).

Obviously, the above algorithm generates many morphs that are not part
of the text corpus. Though the q-gram algorithm is very fast in finding out
that a pattern has no hits in the text (this is so, because the search always
starts with the shortest q-gram offset list, see [16]), pre-filtering of “useless
morphs” was achieved by the introduction of the hexagram filter.

This hexagram filter possesses a trie structure with a maximum depth of
six, but does not store actual offsets of hexagrams. It simply indicates
whether a specific q-gram class (q≤6) exists in the text at all.

So when a morph P' is generated, the hexagram trie is traversed for every
(2nd overlapping) hexagram that is part of P'. If any of the morph's hexagrams
is not part of the trie, P' as a whole cannot be part of text T and is discarded.
However, if all the hexagrams of P' are part of the trie, there is no guarantee
that P' occurs in T, because all hexagrams are part of T, though not necessar-
ily in the same order as in P'. In these cases we rely on the ability of the q-
gram algorithm to terminate quickly for those patterns that are not part of
the text.

When checking the q-grams of P' against the trie structure, there are two
parameters that influence the accuracy of the filter: trie depth TD (we used a
depth of six) and window delta WD of the hexagrams drawn from P'. The
window delta states whether every hexagram of P' is taken (delta=1) or every
second hexagram (delta=2) and so on. Smaller values of trie depth and larger
values of window delta increase filter speed but reduce accuracy – and thus
result in more promising morph candidates, which results in longer overall

Fig. 2. Operating time for different accuracy levels of the trie filter



So, to obtain reasonable values for these two parameters, we executed
fault-tolerant searches with about 14,000 patterns drawn from the text and
recorded the average running times for different values of trie depth TD and
window delta WD. These experiments were performed on an Intel®
Pentium® IV 2.6 GHz processor with 512MB of RAM, and the results are
shown in figure 2. We observed a minimum running time at TD = 6 and
WD = 2, which is the reason why we chose these values for all subsequent ex-
periments. Though these results seems portable to other Indo-European lan-
guages, it is a topic for future research whether the above values of TD and
WD are appropriate for other text corpora, too.

Every time a submorph is applied, the resulting morph P* (if it has passed
the hexagram filter) is stored in a hashmap, together with SP*, its sum of pen-
alty weights. When the WPM algorithm terminates, the list of generated
morphs is sorted in ascending order by SP*. The best B morphs (those with
least penalty weights) are then kept as the final morph list of the original pat-
tern P. The limit B is configurable. Each triple of values Smax, Mmax and B de-
fines a fault-tolerance level.

3.2   Experiments to Determine Reasonable Parameter Settings

As stated in the previous subsection, the degree of fault-tolerance of the
weighted pattern morphing algorithm can be controlled by 3 parameters:
1. Smax the maximum sum of penalty weights a morph may aggregate,
2. Mmax the maximum number of submorphs a morph may accumulate, and
3. B the number of best rated morphs that is fed into the search backend.

The patterns an end-user presents to the search-engine remain an unknown
factor, therefore we chose the following procedure to gain test patterns for our
experiments: We first split up the whole text T into all of its words. As word
delimiter d we chose (in perl notation):
d ∈ [\=\+\s\.\!\?\,\;\:\(\)\[\]\{\}\/\"\“\”\„\±\×\®\°\†\‡\…\~\'\*\·\xA0\%]
Words with embedded hyphens were stored as a whole and additionally all of
their fragments (separated by hyphens) were added. All words W with |W|<9
or |W|>30 were discarded. Applied to the texts of HagerROM this produced
about 260,000 different words.

Every word W of the resulting word list WL1 was then fed into our fault-
tolerant search, while allowing very high values for Smax, Mmax and B. All
words of WL1 where the algorithm generated morphs P' with P'∈WL1 pro-
duced the condensed WL2 with 14,000 different words. To minimize the run-
time of the following experiments, every third word was chosen, resulting in
WL3 with about 4,600 words and an average word length of 14 chars.

So, every search pattern P' of WL3 was part of the original text T and
could be morphed (with high values for Smax, Mmax and B), so that one or more



of its morphs are again part of the total word list WL1 – these morphs are
called valid target-morphs. This was done to find out to what extent Smax,
Mmax and B can be decreased while keeping as many valid target-morphs as
possible. The fact that only morphs P' with P'∈WL1 were accepted in all the
following experiments minimized the number of “useless” morphs. During the
experiments we determined how many valid target morphs P'∈WL1 the algo-
rithm produced for a given parameter set of Smax, Mmax and B.

The weight values for the submorph matrices were manually generated and
carefully chosen from a linguistic point of view based on our experience with
different multilingual text corpora (see section 5 for ideas on automatic
weight generation and optimization).

Weight values were taken from integer values [1, 2, 5, 10, 15, 20, 25, 30] so
that not every possible value was chosen, but rather “classes” of weights such
as [very-helpful, helpful, ..., maybe-dangerous] were used. Other numerical
weight ranges are possible, but probably won't lead to better results.

The following three figures present the results of experiments where two
parameters were kept fixed and the third parameter varied on each test run.

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

2641

3132 3193 3198 3198

Maximum Number of Submorphs (Mmax)

# 
va

lid
 ta

rg
et

-m
or

ph
s

Fig. 3. Experiment#1: Mmax variable [1, 2, ..., 5] (fixed: Smax=60, B=200)

Experiment#1 (see figure 3) led to the conclusion that Mmax (the maximum
number of applied submorphs on the original pattern) should not get greater
than 4, because no increase in valid target-morphs was achieved by higher
values – only more runtime was needed. The fast rise of valid target-morphs
was based on the fact that Smax and B have quite high values in comparison to
the maximum rule weight of 30.

The abrupt rise of the bar at “1 applied submorph” is due to the fact that
for most word variants or words with errors only one small change (like inser-
tion, deletion, transposition) has to be applied. Karen Kukich in [3] (see



page 388) cites Mitton (1987) who examined a 170,016-word text corpus and
revealed that about 70% of the misspelled words contained only a single error.
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Fig. 4. Experiment#2: Smax variable [0, 1, ..., 40] (fixed: Mmax=2, B=200)

Experiment#2 (see figure 4) showed that Smax (the maximum sum of penalty
weights a morph is allowed to collect) should not be higher than 30, which is
at the same time the maximum weight used in the weight matrices. The obvi-
ous step structure of the graph in figure 4 is due to the fact that not every ar-
bitrary weight value from the interval [1, 2, ..., 29, 30] was used in the weight
matrices (see above).
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Fig. 5. Experiment#3: B variable [2, 3, ..., 25] (fixed: Mmax=2, Smax=60)

Finally, Experiment#3 (see figure 5) justifies our decision to always feed only
a maximum of 20 best rated morphs to the non fault-tolerant search backend.
Higher values for B may increase the overall runtime but won't improve
search results any further. Note that the Y-axis of figure 5 was cut-off at a
value of 2700 to allow better evaluation of the graph.



To simplify the use of the fault-tolerance feature by the end-user, macro
levels labeled low, medium and high were established and grouped values for
Smax, Mmax and B, according to table 2.

Table 2. Reasonable parameter settings for different fault-tolerance levels

low medium high

  Smax 10 20 30

  Mmax 2 3 4

  B 10 15 20

The graphical user interface provides the possibility to select and deselect
from the list of occurring morphs, to post-filter variants of the original pat-
tern which might be of less importance to the user. For example, a fault-toler-
ant search for kalzium produces also morphed hits for kalium and calium
(Engl.: potassium), which is a different chemical element. The screenshot of
figure 6 shows a section of the (German) user interface.

Fig. 6. HagerROM – Results of a Fault-Tolerant Fulltext Retrieval with WPM

4   Experiments 

In this section we discuss some experiments regarding the filter efficiency and
the speed of the presented fault-tolerant approach. Based on the characteris-
tics listed in the table below, we used the text corpus of HagerROM for our
experiments, because the true power of WPM shows most notably on large
texts which are a real challenge to a text retrieval system. This amount of
text (13 times as large as “The Bible”) and the vast number of about 600
contributing authors make the WPM based fulltext search an important part
of the commercial CD-ROM product. Other examples for successful applica-
tion of our WPM approach are the DEJAVU online e-Learning system and
Prof. Altmeyer's “Springer Enzyklopädie Dermatologie, Allergologie, Umwelt-
medizin” (Springer's Encyclopedia on Dermatology, Allergology and Environ-
mental Medicine). For details on DEJAVU (Dermatological Education as



Joint Accomplishment of Virtual Universities), see [17]. Springer's encyclope-
dia provides free online-access for physicians on [18].

Table 3. Characteristics of three products using WPM search

Module DEJAVU Altmeyer HagerROM

Text (with Layout) 1.0 MB 22.7 MB 121 MB

Raw text (w/o Layout) 0.4 MB 5.8 MB 53 MB

Hexagram trie filter 0.3 MB 1.2 MB 6 MB

q-gram index 4.3 MB 70.2 MB 450 MB

The following table shows the results of some experiments with fault-tolerant
WPM searches. The number of actual hits of a search pattern is given within
parentheses. We also tested patterns that were not part of the original text,
but which were transformed into valid words after passing the WPM algo-
rithm and so, finally, produced hits in the text corpus.

Table 4. Experiments with WPM on the HagerROM text corpus

Original
pattern

MT
sec.

ST
sec.

UT
sec.

#M #F #N #H Morphs with hits # w/o
filter

azethylsalizyl
(0)

0.23 0.12 0.53 1669 1655 14 2 acetylsalizyl(4),
acetylsalicyl(435)

15035

kalzium
(42)

0.05 0.01 0.23 343 336 7 5 kalzium(42),
calcium(3750),
kalium(2779),
calium(4),
cal?cium(3)

639

pneumokocken-
polysacharid
(0)

0.27 1.19 1.63 2283 2192 91 1 pneumokokken-
polysaccharid (4)

129040

schokolade
(54)

0.47 2.05 2.75 1578 1551 27 4 schokolade(54),
shokolade(1),
chocolade(1),
chocolate(4)

6498

sulfamethoxy-
diazin
(2)

0.33 1.03 1.58 2739 2656 83 3 sulfamethoxydiazin(2),
sulfametoxydiazin(17),
sulfametoxidiazin(1)

24739

Legend of table 4. MT=morph time: time consumed to calculate the best #N
morphs; ST=search time: time consumed by the non fault-tolerant search back-end to
search for these best #N morphs; UT=user time: the total time the user has to wait
for all results (with program launch time). #M: number of actual generated morphs;
#F: number of morphs that did not pass the hexagram filter; #N: number of morphs
that passed the filter with an acceptable amount of penalty weights; #H: number of
morphs from the #N that produced at least one hit in the text corpus; #w/o filter:
without hexagram filtering this number of (mostly useless) different morphs would
have been generated.



All experiments were performed on a standard PC with AMD Athlon®
1.33GHz CPU and 512 MB RAM on a local ATA-66 harddisk under Win-
dows XP®. The compressed q-gram index q={1,2,3,4} needs about 450MB
storagespace (this is 8 times |T|) and can be generated on an ordinary Linux
computeserver in about one hour.

Table 4 demonstrates that on an average PC hardware, fault-tolerant text
retrieval with practical search patterns can be accomplished using the ap-
proach of weighted pattern morphing in acceptable time. Within the pre-
sented examples the user has to wait an average of two seconds to obtain the
wanted results. The hexagram trie filter prevents the algorithm from generat-
ing thousands of morphs that can't be part of the text and thus contributes to
a faster response of the system.

From our discussion it is obvious that the filter becomes less accurate with
longer search patterns. This is due to the fact that the filter can only deter-
mine that every six character substring of a morph is part of text T. The fil-
ter can't determine whether these existing six character substrings of the mor-
phed pattern also occur in the same order and at the same distances inside
text T.

5   Conclusion and Future Work 

We demonstrated that nowadays average end-user PCs are capable of per-
forming multiple, iterated, exact text retrievals over a set of morphed pat-
terns and thus simulate a fault-tolerant search. Morph matrices with penalty
weights seem much more suitable and flexible to model phonetic similarities
and spelling variants in multilingual, multi-author texts than the edit distance
metric or phonetic codes like Soundex and its successors. Weighted pattern
morphing can generate edit distance like spelling variants (delete or swap let-
ters, insert “?” one-letter wildcards) and the algorithm can also put emphasis
on phonetic aspects like sound-code based algorithms. It thus combines the
strength of these two approaches.
The presented algorithm can be added on top of any exact search engine to
create a fault-tolerant behavior. A q-gram index fits extremely well as exact
non-fuzzy search backend, because a “no-hit” result can be detected in short
time and wildcards (“?”, “*”) are easy to implement without extra time costs.

It will be part of future research to automatically fine-tune the penalty
weights in order to customize the system to a special text. We are planning to
run large test series and keep track of how often a submorph produced a valid
target-morph. The collected data will enable us to fine-tune submorph
weights for even better performance.
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